Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3689322.v1

ABSTRACT

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of herd immunity. Here, we isolate spike binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. 28 potent antibodies were isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5 SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.27.559689

ABSTRACT

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.14.557399

ABSTRACT

Viral entry is mediated by oligomeric proteins on the virus and cell surfaces. The association is therefore open to multivalent interactions between these proteins, yet such recognition is typically rationalised as affinity between monomeric equivalents. As a result, assessment of the thermodynamic mechanisms that control viral entry has been limited. Here, we use mass photometry to overcome the analytical challenges consequent to multivalency. Examining the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor, we find that ACE2 induces oligomerisation of spike in a variant- dependent fashion. We also demonstrate that patient-derived antibodies use induced-oligomerisation as a primary inhibition mechanism or to enhance the effects of receptor-site blocking. Our results reveal that naive affinity measurements are poor predictors of potency, and introduce a novel antibody-based inhibition mechanism for oligomeric targets.

4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.06.556503

ABSTRACT

Antibodies play crucial roles in health and disease and are invaluable tools for diagnostics, research, and therapy. Although antibodies bind bivalently, we lack methods to analyse bivalent binding. Here, we introduce a particle-based model and use it to analyse bivalent binding of SARS-CoV-2 RBD-specific antibodies in surface plasmon resonance assays. The method reproduces the monovalent on/off-rates and enables measurements of new parameters, including the molecular reach, which is the maximum antigen separation that supports bivalent binding. We show that the molecular reach (22-46 nm) exceeds the physical size of an antibody (15 nm) and that the variation in reach across 45 patient-isolated antibodies is the best correlate of viral neutralisation. Using the complete set of fitted parameters, the model predicts an emergent antibody binding potency that equals the neutralisation potency. This novel analytical method should improve our understanding and exploitation of antibodies and other bivalent molecules.

5.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2684849.v1

ABSTRACT

Commercially developed monoclonal antibodies (mAb) have been effective in the prevention or treatment of SARS-CoV-2 infection1-3 but the rapid antigenic evolution of the Omicron sub-lineages has reduced their activity4-8 and they are no longer licensed for use in many countries. Here, we isolate spike binding monoclonal antibodies from vaccinees who suffered vaccine break-through infections with Omicron sublineages BA.4/5. We find that it is possible for antibodies targeting highly mutated regions to recover broad activity through allosteric effects (mAb BA.4/5-35) and characterise a pair of potent mAbs with extremely broad neutralization against current and historical SARS-CoV-2 variants. One, mAb BA.4/5-2, binds at the back of the left shoulder of the receptor binding domain (RBD) in an area which has resisted mutational change to date. The second, mAb BA.4/5-5, binds a conserved epitope in sub-domain 1 (SD1). The isolation of this pair of antibodies with non-overlapping epitopes shows that potent and extremely broadly neutralizing antibodies are still generated following infection and SD1 directed mAbs may increase the resilience of mAb therapeutics/prophylactics against SARS-CoV-2.


Subject(s)
COVID-19
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.28.23285084

ABSTRACT

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in large numbers of individuals with hybrid immunity, generated through a combination of vaccination and infection. Based primarily on circulating neutralizing antibody (NAb) data, concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that a history of prior SARS-CoV-2 in particular is associated with profound immune dampening. Taking a broader and comprehensive approach, we characterized mucosal and blood immunity to both spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without a history of previous SARS-CoV-2 infection. We find that the majority of individuals increase BA.1/BA.2/BA.5-specific NAb following infection, but confirm that the magnitude of increase and post-omicron titres are indeed higher in those who were infection-naive. In contrast, significant increases in nasal antibody responses are seen regardless of prior infection history, including neutralizing activity against BA.5 spike. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are still significantly higher in previously-infected individuals, who appear to have maximally induced responses with a CD8+ phenotype of high cytotoxic potential after their 3rd mRNA vaccine dose. Antibody and T cell responses to non-spike antigens also increase significantly regardless of prior infection status, with a boost seen in previously-infected individuals to immunity primed by their first infection. These findings suggest that hybrid immunity induced by omicron breakthrough infections is highly dynamic, complex, and compartmentalised, with significant immune enhancement that can help protect against COVID-19 caused by future omicron variants.


Subject(s)
Breakthrough Pain , COVID-19 , Status Epilepticus
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509178

ABSTRACT

Phosphodiesterase 12 (PDE12) is a negative regulator of the type 1 interferon (IFN) response and here we show that PDE12 inhibitors (lead compounds 63 and 17) are associated with increased RNAseL activity, are well tolerated at the therapeutic range and inhibit, both in vitro and in vivo, the replication of several RNA viruses including hepatitis C virus (HCV), dengue virus (DENV), West Nile Virus (WNV) and SARS-CoV-2.


Subject(s)
Hepatitis C
8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500063

ABSTRACT

Summary Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses - and hence protection from disease - requires careful characterisation. In a large prospective study of UK healthcare workers (PITCH, within the larger SIREN study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZ1222 (Oxford/AstraZeneca) vaccination and following a subsequent BNT162b2 booster vaccination. We make three important observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and B cell responses were better maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels to post second dose levels and broadened neutralising activity against variants of concern including omicron BA.1, alongside further boosting of T cell responses. Thirdly, prior infection maintained its impact driving larger T cell responses compared to never infected people, including after the third dose. In conclusion, the maintenance of T cell responses in time and against variants of concern may account for continued protection against severe disease.


Subject(s)
COVID-19 , Hallucinations
10.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1648691.v1

ABSTRACT

The COVID-19 pandemic has highlighted the urgency for developing more efficient molecular discovery pathways. As exhaustive exploration of the vast chemical space is infeasible, discovering novel inhibitor molecules for emerging drug-target proteins is challenging, particularly for targets with unknown structure or ligands. We demonstrate the broad utility of a single deep generative framework toward discovering novel drug-like inhibitor molecules against two distinct SARS-CoV-2 targets — the main protease (Mpro) and the receptor binding domain (RBD) of the spike protein. To perform target-aware design, the framework employs a target sequence-conditioned sampling of novel molecules from a generative model. Micromolar-level in vitro inhibition was observed for two candidates (out of four synthesized) for each target. The most potent spike RBD inhibitor also emerged as a rare non-covalent antiviral with broad-spectrum activity against several SARS-CoV-2 variants in live virus neutralization assays. These results show that a broadly deployable machine intelligence framework can accelerate hit discovery across different emerging drug-targets.


Subject(s)
COVID-19
11.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1317569.v1

ABSTRACT

Little is known of the role of cytotoxic CD4+ T-cells in the control of viral replication. Here, we investigate CD4+ T-cell responses to three dominant SARS-CoV-2 epitopes and evaluate antiviral activity, including cytotoxicity and antiviral cytokine production. Diverse T cell receptor (TCR) usage including public TCRs were identified; surprisingly, cytotoxic CD4+ T-cells were found to have signalling and cytotoxic pathways distinct from classical CD8+ T-cells, with increased expression of chemokines and tissue homing receptors promoting migration. We show the presence of cytolytic CD4+ T-cells during primary infection associates with COVID-19 disease severity. Robust immune memory 6-9 months post-infection or vaccination provides CD4+ T-cells with potent antiviral activity. Our data support a model where CD4+ killer cells drive immunopathogenesis during primary infection and CD4+ memory responses are protective during secondary infection. Our study highlights the unique features of cytotoxic CD4+ T-cells that use distinct functional pathways, providing preventative and therapeutic opportunities.


Subject(s)
COVID-19
12.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-734011.v1

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
COVID-19
13.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3873839

ABSTRACT

Background: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between first and second dose extends. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose, the immunity after an extended interval between the first and second dose of ChAdOx1 nCoV-19(AZD1222), and the response to a third dose as a late booster. Methods: Volunteers aged 18-55 years who were enrolled in a Phase 1/2 or Phase 2/3 clinical trial of ChAdOx1 nCoV-19 and had received either a single dose or two doses of 5×10 10 viral particles were invited back for vaccination. Reactogenicity and immunogenicity of a delayed second dose or a third dose are reported here.Findings: Antibody titres after a single dose and measured on d362 remain higher than the titres measured on d0 (62.61 EU; 95% CI 47.43-82.64 vs 1 EU 95% CI 1-16). 30 participants received a late second dose of ChAdOx1 nCoV-19 (median 44 weeks after first dose), antibody titres were higher in those with a longer interval between first and second dose (median EU for 8-12, 15-25, and 44-46 weeks were 923 [IQR 525-1764], 1860 [IQR 917-4934] and 3738 [IQR 1824-6625] respectively). 90 participants received a third dose and antibody titres were significantly higher following a third dose (FRNT50 612 [IQR 351-920]) when compared with the response 28 days after a second dose (FRNT 50 319 [IQR 176-591]. T-cell responses were also boosted after a third dose. Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose.Interpretation: A longer delay before the second dose of ChAdOx1 nCoV-19 leads to an increased antibody titre after the second dose. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlate with high efficacy after second dose and boosts T-cell responses.Funding: UK Research and Innovation (MC_PC_19055), Engineering and Physical Sciences Research Council (EP/R013756/1), National Institute for Health Research (COV19 OxfordVacc-01), Coalition for Epidemic Preparedness Innovations (Outbreak Response To Novel Coronavirus (COVID-19)), National Institute for Health Research Oxford Biomedical Research Centre (BRC4 Vaccines Theme), Thames Valley and South Midland’s NIHR Clinical Research Network, and AstraZeneca. The views expressed in this publication are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19. AstraZeneca reviewed the data from the study and the final manuscript before submission, but the authors retained editorial control. SCG and AVSH are cofounders of and shareholders in Vaccitech (collaborators in the early development of this vaccine candidate) and named as inventors on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine (SCG only). TL is named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and was a consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AJP is a NIHR Senior Investigator.Ethical Approval: In the UK, the COV001 and COV002 studies were approved by the South Central Berkshire Research Ethics Committee (COV001 reference 20/SC/0145, March 23, 2020; and COV002 reference 20/SC/0179; conditional approval April 8, full approval April 19, 2020).


Subject(s)
COVID-19
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.08.447308

ABSTRACT

There is an ongoing global effort, to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations that negatively impact the role of neutralising antibodies. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine against the variant of concern B.1.351 (AZD2816). We demonstrate AZD2816 is immunogenic after a single dose and when used as a booster dose in animals primed with original vaccine AZD1222, we see no evidence of original antigenic sin but high titre antibodies against a number of variant spike proteins. In addition, neutralisation titres against B.1.351 (Beta), B.1.617.1 (Kappa) and B.1.617.2 (Delta), are induced in these boost regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

15.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Subject(s)
COVID-19 , Sepsis
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.04.21256571

ABSTRACT

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.


Subject(s)
COVID-19
17.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3829931

ABSTRACT

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine is immunogenic and protects against COVID-19. However, data on vaccine immunogenicity are needed for the 40 million people living with HIV (PWH), who may have less functional immunity and more associated co-morbidities than the general population. Methods: Between the 5th and 24th November 2020, 54 adults with HIV, aged 18-55 years, were enrolled into a single arm open label vaccination study within the protocol of the larger phase 2/3 COV002 trial. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses (5 × 1010 vp) was given 4-6 weeks apart. All participants were on antiretroviral therapy (ART) with undetectable plasma HIV viral loads and CD4+ T cell counts >350 cells/µl at enrolment. Data were captured on adverse events. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo interferon-γ enzyme-linked immunospot assay (ELISpot) and T cell proliferation. All outcomes were compared with a HIV uninfected group from the main COV002 study.Findings: 54 participants with HIV (median age 42.5 years (IQR 37.2-49.8)) received two doses of ChAdOx1 nCoV-19. Median CD4+ T cell count at enrolment was 694 cells/µl (IQR 562-864). Results are reported for 56 days of follow-up. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (49%), fatigue (47%), headache (47%), malaise (34%), chills (23%), and muscle or (36%) joint pain (9%), the frequencies of which were similar to the HIV-negative participants. There were no serious adverse events. Anti-spike IgG responses by ELISA peaked at Day 42 (median 1440 ELISA units, IQR 704-2728) and were sustained out to Day 56. There was no correlation with CD4+ T cell count or age and the magnitude of the anti-spike IgG response at Day 56 (P>0.05 for both). ELISpot and T cell proliferative responses peaked between Day 14 and 28 after prime and were sustained through to Day 56. When compared to participants without HIV there was no statistical difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (P>0.05 for all analyses).Interpretation: In this study of PWH, vaccination with ChAdOx1 nCoV-19 was well tolerated and there was no difference in humoral and cell-mediated immune responses compared to an adult cohort without HIV who received the same vaccination regime. Trial Registration: Trial Registration number is NCT04400838. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19 (AZD1222). AstraZeneca reviewed the data from the study and the final manuscript before 474 submission, but the authors retained editorial control. SCG is cofounder of Vaccitech (a collaborator in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine. TL is named as an inventor on a patent application covering this SARS-CoV-2 vaccine and was consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AVSH is a cofounder of and consultant to Vaccitech and is named as an inventor on a patent covering design and use of ChAdOx1-vectored vaccines (PCT/GB2012/000467).Ethical Approval: Written informed consent was obtained from all participants, and the trial was done in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. This study was approved in the UK by the Medicines and Healthcare products Regulatory Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (reference 20/SC/0145). Vaccine use was authorised by Genetically Modified Organisms Safety Committees at each participating site.


Subject(s)
HIV Infections , COVID-19 , Hemoglobin SC Disease
18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.30.437704

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants.


Subject(s)
COVID-19 , Infections
19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253218

ABSTRACT

Background Natural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. Methods In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results 13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. Conclusion Natural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , Protein S Deficiency
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20234369

ABSTRACT

BackgroundIt is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection. MethodsWe investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at Oxford University Hospitals, UK. Baseline antibody status was determined using anti-spike and/or anti-nucleocapsid IgG assays and staff followed for up to 30 weeks. We used Poisson regression to estimate the relative incidence of PCR-positive results and new symptomatic infection by antibody status, accounting for age, gender and changes in incidence over time. ResultsA total of 12219 HCWs participated and had anti-spike IgG measured, 11052 were followed up after negative and 1246 after positive antibody results including 79 who seroconverted during follow up. 89 PCR-confirmed symptomatic infections occurred in seronegative individuals (0.46 cases per 10,000 days at risk) and no symptomatic infections in those with anti-spike antibodies. Additionally, 76 (0.40/10,000 days at risk) anti-spike IgG seronegative individuals had PCR-positive tests in asymptomatic screening, compared to 3 (0.21/10,000 days at risk) seropositive individuals. Overall, positive baseline anti-spike antibodies were associated with lower rates of PCR-positivity (with or without symptoms) (adjusted rate ratio 0.24 [95%CI 0.08-0.76, p=0.015]). Rate ratios were similar using anti-nucleocapsid IgG alone or combined with anti-spike IgG to determine baseline status. ConclusionsPrior SARS-CoV-2 infection that generated antibody responses offered protection from reinfection for most people in the six months following infection. Further work is required to determine the long-term duration and correlates of post-infection immunity.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL